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6-Methyltetracyclo[4.2.0.0'7.0°"Joctane - a Bridged [3.3.3]Fenestrane
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Institut fiir Organische Chemie der Universitit Milnchen, Karlstr. 23, D-80333 Miinchen,
Germany

Abstmact: The reaction of 1-bromo-2-chloromethyl-7-methyltricyclo[4.1.0.0*"Jheptane with
methyllithium leads to either 2-methyl-3-methylenetricyclof4.1.0.0*"Jheptane or 7-bromo-1,7-
dimethyl-2-methylenebicyclo[4.1.0]heptane depending on the methyllithium reagent used. Both
products suggest that 6-methyltetracyclo[4.2.0.0"7.0>"]octane was formed as an intermediate.

Tricyclo[2.1.0.0'*]pentane 1? ([3.3.3)fenestrane’), first synthesized by Wiberg and McClusky, is one
of the most highly strained hydrocarbons. One signal of its °C NMR spectrum has been observed at -55 °C.
At -50 °C, however, 1 rearranged in a concerted but nonsynchronous process under cleavage of the two central
bonds (C-1-C-3 and C-1-C-4) of 1 to give cyclopentenylidene 2, which was stabilized by hydrogen migration
to afford cyclopentadiene.

1,3-Bridged derivatives of 1 such as 3 (6-methyltetracyclo[4.2.0.0"7.0>"Joctanc) would be expected to
have a lower propensity to cleave the bicyclobutane central bonds (C-1-C-7 and C-6-C-7) leading to carbene
4, because the CC double bond in 4 is placed at a bridgehead position. Therefore, this energetically less
favorable ring opening of 3 might enhance its lifetime and allow a full spectroscopic characterization and
perhaps its isolation. 1-Bromo-2-chloromethyl-7-methyltricyclo[4.1.0.0*"]heptane (5a)*® was regarded as a

suitable precursor for 3. Its synthesis was achieved from cyclohexene in seven steps.
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Cyclohexene was lithiated at the allylic position as reported by Schlosser by use of potassium tert-
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butoxide and n-butyllithium,* followed by workup with para-formaldehyde affording -
cyclohexenyl)methanol (6a)*™ in 65% yield. 6a was O-protected to give 6b by treatment with 3,4-dihydro-2H-
pyran/pyridinium p-toluenesulfonate (PPTS).° Addition of dibromocarbene (CHBr,/NaOH, NBu,)’ to the
tetrahydropyranyl ether 6b followed by cleavage of the protecting group gave a 63 % yield of (7,7-
dibromobicyclo[4.1.0]hept-2-y)methanol 7 as a 3.5 : 1 mixture of trans and cis isomers. Treatment of this
mixture with 2.0 equiv, of MeLi gave a 9:1 mixture of tricycloheptanes 8a and 9 in a total yield of 42%.
Methylation of 8a at its bridgehead position was achieved with 2 equiv. of BuLi in ether followed by addition
of potassium zers-butoxide and addition of methyl iodide producing a 73 % yield of 8b.® Lithiation of 8b at
the second bicyclo[1.1.0]butane bridgehead with 2 equiv. of BuLi and reaction of the organometallic
intermediate with tosyl bromide produced a 55 % yield of 8¢ which could be converted into 5a in 63 % yield

by use of tris(dimethylamino)phosphine/tetrachloromethane.’
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Reaction of 5a with BuLi in THF at -90 °C gave §b which did not cyclize to 3 at this temperature,
Warming this solution under “C NMR control to 0 °C in temperature intervals of 10 °C did not lead to new
NMR signals which could be assigned to 3. Quenching of 5b with methanol in the range of -90 to -78 °C
gave chloride Sc together with non-identified olefinic material.

Neither the MeLi/LiBr complex nor halide-free MeLi were able to induce the Li/Br exchange of Sa
in THF at -78 °C. However, when the mixture of MeLi/LiBr and 5a was allowed to warm to room
temperature, 2-methyl-3-methylenetricyclo[4.1.0.0*"Jheptane (10) was formed in 45% yield. The structure of
this compound rests on the spectral data of 10, specifically on its >C NMR spectra. The structure of 10, which
is isomeric to 3, shows that massive bond reorganization has taken place. A rational course of the formation
of 10 proceeds via retrocarbene ring opening of intermediate 3. In accordance with our initial working
hypothesis, carbene 4 is not involved in the isomerization process. The extra strain energy of the bridgehead
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CC double bond in 4 is circumvented by an alternate fission of CC bonds in 3: cleavage of the bonds C-1-C-7
and C-7-C-8 leads to carbene 11. As a bicyclo[4.1.0]hept-7-ylidene, 11 is expected to stabilize by a CH-
insertion reaction leading to tricyclo{4.1.0.0*'Jheptane 10."°

A somewhat different reaction course was observed when halide-free MeLi was used as a base. After
mixing MeLi and Sa in THF at -78 °C and warming the solution to room temperature aqueous workup
afforded a 30% yield of a 2.5:1 mixture of (2-methylene)bicyclo[4.1.0Theptanes 14a and b. An obvious route
for the formation of 14 could be the addition of MeLi to carbene 11, followed by Li/Br exchange of the
corresponding adduct and methyl bromide, present in the reaction mixture by the intial formation of 5b. This
reaction path, however, seems rather unlikely, because a considerable number of bicyclo[4.1.0]hept-7-ylidenes
have been generated in the presence of MeLi or other organolithium reagents without the observation of an
RLi adduct to the carbenic center. A preliminary reasonable mechanism of the formation of 14 is depicted in
Scheme 1:

Scheme 1:
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In the first step of Scheme 1, halide-free MeLi adds to the most highly strained carbon atom to give 12. In
the second step 12 is isomerized to the cyclopropyl derivative 13a or b in a rarely observed, but not
unprecedented ring opening of a cyclobutyllithium derivative."' The observed products 14a/b are generated by
Li/Br exchange. Details of this mechanism are under further investigation.
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