
Terrahedmn Letters, Vol. 35, No. 24. pp. 40934096. 1994 
Elm4er Science Ltd 

Printed in Chat Britain 
oo40-4039/94 $7.00+0.00 

0040-4039(94)EO778-V 

6-Methyltetmcyclo[4.2.0.01*‘.0s~7]octane - a Btidged [3.3.3]Fenestnme 

hmk Albcr aud Gfinfcr Sxeimies*’ 

Institut ftir Organische Chemie der Universit%it MUnchen. Karlstr. 23, D-80333 Miinchen, 

Germany 

Abstmct: The reaction of 1-bromo-2-chloromethyI-7-methyltricyclo[4.1.O.~‘]heptaue with 
methyllithium leads to either 2-methyl-3-methylenetricyc10[4.1 .0.tP7]beptanc or ‘I-bromo- 1,7- 
dimetbyl-2-methylenebicyclo[4.l.O]heptaue depending on the metbyllitbium reagent used. Both 
products suggest that 6-methyltetracyclo[4.2.O.O’~‘.ti$ctsue was formed as au intermediate. 

Tricyclo[2.1.0.0’3]pentane 1’ ([3.3.3]fenestrane”), first synthesized by Wiberg and McClusky. is one 

of the most highly strained hydrocarbons. One signal of its 13C NMR spectrum has been observed at -55 “C. 

At -50 “C, however, 1 rearranged in a concerted but nonsynchronous process under cleavage of the two central 

bonds (C-l-C-3 and C-l-C-4) of 1 to give cyclopentenylidene 2. which was stabilized by hydrogen migration 

to afford cyclopentadiene. 

1,3-Bridged derivatives of 1 such as 3 (6-methy1tetmcyc1o[4.2.0.0’*‘.~*’]octane) would be expected to 

have a lower propensity to cleave the bicyclobutane central bonds (C-l-C-7 and C-6-C-7) leading to carbene 

4, because the CC double bond in 4 is placed at a bridgehead position. Therefore, this energetically less 

favorable ring opening of 3 might enhance its lifetime and allow a full spectroscopic charactexization and 

perhaps its isolation. 1-Bromo-2-ch1oromethy1-7-methy1tricyc1o[4.1.0.d~‘]heptane (Sa)kb was regarded as a 

suitable precursor for 3. Its synthesis was achieved from cyclohexene in seven steps. 

Cyclohexene was lithiated at the allylic position as reported by Schlosser by use of potassium terr- 
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butoxide and n-butyllithium,” followed by workup with pa ru -formaldehyde affording (2- 

cyclohexenyl)methanol (4a)sb in 65% yield. 6a was O-protected to give 6b by ment with 3,4-dihydro-ZH- 

pyran/pyridinium p-toluenesulfonate (PPTS)? Addition of dibromocarbene (CHBQNaOH, NBQ7 to the 

tetrahydropyranyl ether db followed by cleavage of the protecting group gave a 63 % yield of (7,7- 

dibromobicyclo[4.1.O]hept-2-yl)methanol 7 as a 3.5 : 1 mixture of frurrs and cis isomers. Treatment of this 

mixture with 2.0 equiv, of MeLi gave a 9: 1 mixture of tricycloheptanes 8a and 9 in a total yield of 42%. 

Methylation of 8a at its bridgehead position was achieved with 2 equiv. of BuL,i in ether followed by addition 

of potassium tert-butoxide and addition of methyl iodide producing a 73 % yield of 8b.* Lithiation of 8b at 

the second bicyclo[l, f ,O]butane bridgehead with 2 equiv. of BuLi and reaction of the organometallic 

intemediate with tosyl bromide produced a 55 % yield of 8c which could be converted into 5a in 63 % yield 

by use of tris(dimethylarnino)phosphine/tetrachluromethane.g 

CH,-X 

3 
6a:X=O-H 

6b: X = Cl-THP 

Br CH&H R’ R* 

CH2-OH 

10 11 

8 R’ R2 

a: Ii H 

b: CH3 H 

C: CH3 Br 

Reaction of Sa with BuLi in THF at -90 “C gave Sb which did not cyclize to 3 at this temperature. 

Warming this solution under “C NMR control to 0 “C in temperature intervals of 10 “C did not lead to new 

NMR signals which could be assigned to 3. Quenching of 5b with methanol in the range of -90 to -78 “C 

gave chloride 5c together with non-identified olefinic material. 

Neither the MeLiILiBr complex nor halide-free MeLi were able to induce the LiIBr exchange of 5a 

in THF at -78 “C. However, when the mixture of MeLi/LiBr and 5a was allowed to warm to room 

temperature, 2-methyl-3-metbylenetricyclo[4.1 .0.02V7]heptane (10) was formed in 45% yield. The structure of 

this compound rests on the spectral data of 10, specifically on its 13C NMR spectra_ The structu~ of 10, which 

is isomeric to 3, shows that massive bond reorganization has taken place. A rational course of the formation 

of 10 proceeds via retrocarbene ring opening of intermediate 3. In accordance with our initial working 

hypothesis, carbene 4 is not involved in the isomerization process. The extra strain energy of the bridgehead 
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CC double bond in 4 is circumvented by an alternate fission of CC bonds in 3: cleavage of the bonds C-l-C-7 

and C-7-C-8 leads to carbene 11. As a bicyclo[4.l.O]hept-7-ylidene. 11 is expected to stabilize by a CH- 

insertion reaction leading to tricyclo[4.1 .O.@“]heptane 10.” 

A somewhat different reaction course was observed when halide-free MeLi was used as a base. After 

mixing MeLi and 5a in THF at -78 “C and warming the solution to room temperature aqueous workup 

afforded a 30% yield of a 2.5: 1 mixture of (2-methylene)bicyclo[4.1 .O]heptanes 14s and b. An obvious route 

for the formation of 14 could be the addition of MeLi to carbene 11, followed by Li/Br exchange of the 

corresponding adduct and methyl bromide, present in the reaction mixture by the intial formation of Jb. This 

reaction path, however, seems rather unlikely, because a considerable number of bicyclo[4.l.O]hept-7-ylidenes 

have been generated in the presence of MeLi or other organolithium reagents without the observation of an 

RLi adduct to the carbenic center. A preliminary reasonable mechanism of the formation of 14 is depicted in 

Scheme 1: 

Scheme 1: 

3 12 

13b 

l-l&-Br 

14b 

In the first step of Scheme 1, halide-free MeLi adds to the most highly strained carbon atom to give 12. In 

the second step 12 is isomer&d to the cyclopropyl derivative 13a or b in a rarely observed, but not 

unprecedented ring opening of a cyclobutyllithium derivative.” The observed products 141~0~ are generated by 

Liir exchange. Details of this mechanism are under further investigation. 
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